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Photoacoustic imaging (PAI) is a noninvasive medical 
imaging technique that has a great potential for clinic 
applications such as early tumor detection[1,2], vessel 
 imaging[3,4], and brain imaging[5]. PAI technique can pro-
vide higher contrast[6] and resolution than ultrasound 
imaging and is more effective for imaging deeper struc-
ture compared with pure optical imaging. It combines 
the strengths of optical and ultrasound imaging[7].

In the practical use of PAI, tissues are illuminated 
with short laser pulses, which result in the generation 
of acoustic waves because of the photoacoustic effect. 
In this letter, we are concerned about the computed 
tomographic PAI in the imaging mode. The propa-
gated photoacoustic signals are detected by a scanning 
 ultrasound transducer or a transducer array. With the 
knowledge of these sampling data, the optical absorp-
tion deposition within the tissue can be estimated by 
employing an image reconstruction algorithm.

The key point of imaging quality in PAI is the 
 reconstruction algorithms. Xu et al. proposed the fil-
tered back-projection algorithm[8] for PAI, which has 
been widely used for its convenience. The deconvolu-
tion  reconstruction algorithm proposed by Zhang et 
al. has specific advantages under the circumstance of 
limited-angle sampling and heterogeneous acoustic 
medium[9,10]. The above-mentioned algorithms are the 
analytical  reconstruction methods, which have advan-
tages in the computational cost and implementation 
convenience.  However, the analytical algorithms fail 
to be effective when the sampling points are sparse 
and the sparse-view imaging system is very important 
to reduce data acquaintance time. This drawback lim-
its the applications of the analytical algorithms and 
impairs their  performance.

There also exists PAI system which can image the 
whole area with one laser exposure. These systems 
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usually have large amount of transducers around 
the imaging area. With the help of sparse-view PAI  
reconstruction method, the transducer amount can be 
reduced. This reduction benefits the system from two 
main aspects. Firstly, the system is easier to maintain 
in a lower level of system complexity. Secondly, this re-
duction can make the data scale much smaller. Besides 
these two aspects, it is also worth mentioning that it 
reduces the cost of the system. These aspects are very 
important for further clinical applications. So it is very 
important to develop a sparse-view imaging system.

In order to avoid these shortcomings, the model-based  
iterative algorithms are developed faster in recent years. 
The iterative algorithms can provide improvement in 
image quality and noise robustness[11]. Among them, 
algorithms that adopted the compressed sensing (CS)  
theory perform best in sparse-view reconstruction[12]. 
The total variation (TV) method is involved in the CS 
theory. The TV-based iterative algorithms can recover 
the images accurately from the sparse sampling data 
in PAI[13,14]. But it has been shown that the TV-based 
algorithm sometimes transforms the smooth area into 
piecewise constants and fails to show some detailed 
 information.

In this letter, we propose a novel algorithm for sparse-
view PAI image reconstruction. The algorithm combines 
the TV minimization with the high-degree TV (HDTV) 
minimization. Our contributions are threefold. Firstly, 
we include the HDTV minimization into the PAI recon-
struction. This combined method is able to avoid the 
painting such as artifacts in smooth  regions and inherits 
edge preservation advantage of the standard TV. Sec-
ondly, we implement a weighting function to combine 
the solutions of the TV and the HDTV minimizations. 
This weighting function is adaptively updated. Thirdly,  
we extend the fast iterative shrinkage/thresholding 
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 algorithm (FISTA)[15] approach to solve the HDTV 
minimization. Our numerical simulations confirm that 
the proposed method is able to reconstruct the image 
with better quality and more  detailed information. In 
vitro experiments illustrate that the method can be 
used in practical PAI.

Here we focus on two-dimensional PAI. A short pulsed 
laser is used to illuminate the tissue. Due to the pho-
toacoustic effect, some of the laser energy are absorbed 
and converted into heat, leading to thermo-elastic  
expansion and thus acoustic wave generation. Then 
these photoacoustic signals are detected by ultrasound 
transducer at different positions in the scanning plane. 
Based on the assumption that the illumination is spa-
tially uniform and the laser pulse is sufficiently short, 
the relationship between the detected acoustic signals 
and the laser absorption distribution can be written as
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where ( , )p r t�  is the acoustic pressure measurement at 
position r� and time t, c is the speed of sound, Cp is the 
specific heat, m is the isobaric expansion coefficient, I(t) 
is the temporal profile of the laser pulse, and ( )u r�  is 
the laser absorption distribution.

With the assumption that the speed of sound remains 
the same, Eq. (1) can be solved as
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where 0r
�  is the position of the ultrasound transducer.

By using the method in Ref. [14], a new variable is 
defined as
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Then Eq. (2) can be converted as
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In practical imaging, the reconstructed image and the 
measurements are processed discretely, and the image is 
reshaped into vectors for convenience. If the size of the 
reconstructed image ( )u r�  is X pixels × Y pixels, then 
the total pixel number of the reconstructed image ( )u r�  
is N (N = XY). After vectorization, the reconstructed 
image ( )u r�  becomes a vector u with the length of N. 
If the total number of the detection points is Q, the 
length of measurement in each detection point is M, 
then Eq. (4) can be expressed as

 = ⋅ �T 1 2 ,i if A i = , , ,Qu  (5)
where fi is the integration of the ( )u r�  along the arc 
that is centered in the ith detection point and with 
a radius of ct, Ai is the projection matrix of the ith 
detection point, and T is the transpose operation of a 
matrix. 

It is reported[14] that the image can be accurately 
 recovered from the sparse sampling data by minimizing 
the TV value. The TV value is defined as
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Using TV values to reconstruct the image can be 
 expressed as the following optimization problem:
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An iterative algorithm is implemented to solve this 
problem. The iteration step consists of two parts, the 
residual corrections of all sampling points and the TV 
minimization by the FISTA[15] method. They are carried 
out repeatedly to accomplish the image reconstruction. 
The iteration can be summarized as follows:
1.  Calculate the residual corrections Du using
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2.  Transform the vector Du into the image domain to 
get the residual corrections image Δu, update the 
reconstructed image by unew = u -Δu.

3.  After completing the corrections of all sampling 
points, the updated image unew is processed by the 
FISTA method for TV minimization.

This iteration is carried out repeatedly to accomplish 
the image reconstruction result u1.

But it has also been shown that the TV-based 
 algorithms reconstructed the smooth area image with 
piecewise constants and sometimes lose some detailed 
i nformation. To overcome this spurious effect, we 
 involve the HDTV into the reconstruction. The HDTV 
value is defined as
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Using the HDTV values to reconstruct the image can 
be expressed as the following optimization problem:

 a
 

⋅ + − 
 

2

2

1min HDTV( ) .
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An iterative algorithm similar to the optimization Eq. (7)  
is implemented to solve the problem. Here we propose 
the FISTA method for HDTV minimization.

Firstly we give some notations in order.
(W, Q) is the matrix pair where ( 2)X YW R − ⋅∈  and 

( 2)X YQ R ⋅ −∈  that satisfy
2 2
, , 1 ,i j i jw q+ ≤

where wi,j and qi,j are the elements in matrices W and Q.
L is a linear operation defined by
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LT is a linear operation defined by 
( ) ( , ),TL u W Q=

where ( 2)X YW R − ⋅∈  and ( 2)X YQ R ⋅ −∈  are matrices  defined by

, , 1, 2,2 ,i j i j i j i jw u u u− −= − +

, , , 1 , 22 .i j i j i j i jq u u u− −= − +
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With these notations, we can transform Eq. (9) as
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The dual problem described in Eq. (11) is in the same 
form of the FISTA dual problem. We can implement 
the FISTA algorithm to the HDTV minimization by 
using our new notations. By using the same iteration 
process to solve Eq. (7) we can accomplish the recon-
structed image u2.

We use a convex combination to generate a new 
 solution that contains the best from each of these two 
methods. It is defined as

 1 2(1 ) ,u u uq q= ⋅ + − ⋅  (12)
where q is the weighting function that can be found 
adaptively between the iterations. The weighting func-
tion is updated according to
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As a result, the combined HDTV and TV algorithm, 
which we will refer to as the HDTV-FISTA algorithm, 
is summarized as follows:
1.  Initialization: the initialization reconstructed has to 

be zero matrix.
2.  Use the FISTA algorithm for TV minimization to 

get reconstructed image u1.
3.  Use the FISTA algorithm for HDTV minimization to 

get reconstructed image u2.
4. Combine u1 and u2 by Eq. (12).
5. Update q by Eq. (13).
6.  When the exiting criterion is met, end the iterations. 

Otherwise return to step (2).
Here we present the simulation results obtained from 
the proposed HDTV-FISTA method to verify the 
 effectiveness on PAI. The simulation platform is that 
of Matlab v7.14 on a PC with 3.07 GHz Intel Xeon 
processor (only 1 core is used in simulation) and 32 GB 
memory. The speed of sound is set to be consistent in 
the simulation as 1500 m/s. 

In the simulation, we choose the FORBILD phantom 
to be the initial optical absorption distribution image. 
The phantom is shown in Fig. 1. The measurements 
from the phantom are generated by using Eq. (2). The 
size of the phantom is 89.6×89.6 (mm) and the radius 
of the scanning circle is 42 mm. The reconstructed im-
age is 128×128 pixels. We simulate the situations of 
90, 60, and 30 sampling angles, which cover a full 360° 
angular range. 

In this simulation, the performance of HDTV-FISTA 
is compared with the L1-norm[12] and the TV gradient 
descent (TV-GD)[14] algorithms. The iterations steps are 
all set to be 10. The parameter th is set to be 0.2. 
The reconstructed images by L1-norm, TV-GD, and  
HDTV-FISTA algorithms are shown in Fig. 2. 

It is shown in the first column of Fig. 2 that all the 
algorithms can reconstruct the accurate image when 
the sampling data are sufficient. When the sampling 
angles get sparse during the simulation, the L1-norm 
method struggles to depress the noise and the image 
quality is severely affected. The TV-GD algorithm 
is the closest to the HDTV-FISTA in image quality. 
When it comes to the extreme sparse sampling angles  
(30 views), the painting such as staircase arti-
facts emerges in the smooth regions of the  TV-GD 
 reconstruction result. Also the reconstruction  result is 
far from accurate in the low contrast regions in the top 
and left of the phantom. Meanwhile the HDTV-FISTA 
results are not affected in these  regions. The decreasing 
of the sampling views does not substantially affect the 
quality of HDTV-FISTA reconstruction. 

Fig. 1. FORBILD phantom.

Fig. 2. Images in rows reconstructed by (a–c) L1-norm, (d–f) 
TV-GD, and (g–i) HDTV-FISTA algorithms, respectively. Im-
ages in columns refer to the results from 90-, 60-, and 30-view, 
respectively.
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We calculate the peak signal-to-noise ratio (PSNR) 
and mean-square error (MSE) of the reconstructed 
images with the original FORBILD images as stan-
dard to evaluate the above-mentioned methods. The 
 quantitative results are shown in Table 1. Among all 
the three CS-based algorithms, the PSNRs of the imag-
es reconstructed by the HDTV-FISTA are the highest. 
We continuously decrease sampling point amount in 
 order to find the limit density of the sampling points. In 
this simulation, the image is acceptable when its PSNR 
can reach 30 dB. It is revealed from the  simulation 
that the density of the transducer can be reduced to 
15 for HDTV-FISTA algorithm. The comparison of 
the visual sensation and the PSNR value demonstrates 
that the HDTV-FISTA is the most accurate and stable 
 algorithm in sparse-view PAI. 

We also scan the imaging area with un-equal angle 
step to test the universality of our algorithm. The sim-
ulation setup and the result are shown in Fig. 3. As can 
be seen from Fig. 3, the reconstruction result can still 
maintain a very high quality. 

We study the convergence rate of the proposed meth-
od through the simulation. The TV-GD algorithm is 
reported as an efficient and stable iterative algorithm 
in PAI. Its reconstruction results are  closest to the 
 proposed  algorithm in image quality. Here we com-
pare it with the HDTV-FISTA algorithm. The sam-
pling view is 30. It is reported that the FISTA-based 
methods have a global rate of convergence which is sig-
nificantly better than currently known gradient-based 
methods. To explore the accuracy obtained by these 
two algorithms, we use a parameter that shows the dif-
ference between the reconstructed image and the origi-
nal phantom  image. The parameter d is defined as
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where u is the reconstructed image and t is the original 
image. The size of the image is X×Y. The simulation 
result is shown in Fig. 4. 

The x-axis shows the value of difference and the  
y-axis shows the iteration times. The line ‘—’ refers to 
the TV-GD algorithm and the line ‘o—’ represents the 
HDTV-FISTA algorithm. Clearly, the HDTV-FISTA  
reaches greater accuracies than the image reconstruct-
ed by the TV-GD. Moreover, the function value d 
reached by the TV-GD after eight iterations is  already 
obtained by the HDTV-FISTA after three iterations. 
It can be surmised that the convergence rate of the 
HDTV-FISTA algorithm is faster than that of the  
TV-GD  algorithm.

We also verify the HDTV-FISTA algorithm through 
the in vitro experiment. The PAI system is illustrated 
in Fig. 5(a). An Nd:YAG laser generator (Continuum, 
Surelite I) with a wavelength of 532 nm and a repeti-
tion rate of 10 Hz is used. An ultrasound immersion 
transducer (Panametric, V383-SU) with a central fre-
quency of 3.5 MHz and a bandwidth of 3.5 MHz is used 
to receive the photoacoustic signals. The signals are 
amplified by the pulse receiver (Panamertric, 5900PR) 
and sampled by the oscilloscope (Agilent, 54622D). 

During the experiment, we use gelatin cylinder to 
make the imaging tissue, as shown in Fig. 5(b). The 
radius of the phantom is 25 mm. The phantom is 
made by three rubber bars with diameter of 1 mm 
that  embedded as the optical absorbers. In the experi-
ment, the transducer circularly scans around the imag-
ing tissue with a radius of 42 mm. The angular step 

Table 1. PSNRs (dB)/MSE of Reconstructed Images of FORBILD Phantom

PSNRs (dB)/MSE 90-view 60-view 30-view
L1-norm 28.68/0.136 26.53/0.222 20.67/0.851
TV-GD 31.75/0.067 29.68/0.108 26.63/0.217

HDTV-FISTA 40.37/0.009 39.12/0.012 38.15/0.015

Fig. 3. Un-equal angle step scanning: (a) projection setup and 
(b) reconstruction result.

Fig. 4. Difference between the reconstructed images and the 
original phantom image versus the iteration number.
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is set to be 4° and 12°. The sampling frequency of the 
 oscilloscope is set to 16.67 MHz.

The images are reconstructed by the L1-norm, the 
TV-GD, and the HDTV-FISTA algorithms. The recon-
structed images are shown in Fig. 6. We can find out 
from the first row of Fig. 6 that these algorithms are 
all effective in the sufficient data condition. When the 
sampling view is sparse, it is shown in the image that 
the artifacts emerge and the quality is severely affected 
in the L1-norm and the TV-GD algorithm. Meanwhile, 
it is shown that the HDTV-FISTA algorithm outper-
forms the other two algorithms in image contrast and 
noise suppression. The structure of the phantom is 
clear and the background noise is well suppressed. The 
comparison indicates that the HDTV-FISTA method 
has a better performance in the situation of sparse-view 

sampling data, which contributes to the reduction of 
the scanning time in practical use.

In conclusion, we propose an iterative method for the 
PAI reconstruction based on TV and HDTV minimiza-
tions. The FISTA method is implemented to provide 
better rate of convergence. Through the numerical sim-
ulations and in vitro experiment, the proposed method 
is able to reconstruct the image with better quality and 
can be used in practical sparse-view PAI.
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Fig. 5.(a) Scheme of the experiment platform. (b) Photo of the 
imaging samples.

Fig. 6. Reconstructed images of rubber sample. The first row 
is 90-view and the second is 30-view. Images from the left to 
right refer to reconstructed by the L1-norm, the TV-GD, and 
the HDTV-FISTA algorithm, respectively.


